
Report for
CoboTokenization

Date: August 1, 2025 Version: 1.0
Contact: contact@blocksec.com

mailto:contact@blocksec.com

Contents

Chapter 1 Introduction 1
1.1 About Target Contracts . 1
1.2 Disclaimer . 1
1.3 Procedure of Auditing . 2

1.3.1 Security Issues . 2
1.3.2 Additional Recommendation . 2

1.4 Security Model . 3

Chapter 2 Findings 4
2.1 Security Issue . 4

2.1.1 Potential front-run attack in the function deployAndInit() 4
2.2 Recommendation . 6

2.2.1 Add zero address checks . 6
2.3 Note . 6

2.3.1 Access list disabled by default . 6
2.3.2 Behavior when an account exists in both _accessList and _blockList . . . 7
2.3.3 Pausable functionality implementation . 7
2.3.4 Potential centralization risks . 8

Report Manifest

Item Description
Client Cobo
Target CoboTokenization

Version History

Version Date Description
1.0 August 1, 2025 First release

Signature

About BlockSec BlockSec focuses on the security of the blockchain ecosystem and col-
laborates with leading DeFi projects to secure their products. BlockSec is founded by top-
notch security researchers and experienced experts from both academia and industry. They
have published multiple blockchain security papers in prestigious conferences, reported sev-
eral zero-day attacks of DeFi applications, and successfully protected digital assets that are
worth more than 14 million dollars by blocking multiple attacks. They can be reached at Email,
Twitter and Medium.

https://www.blocksec.com
mailto:contact@blocksec.com
https://twitter.com/BlockSecTeam
https://blocksecteam.medium.com/

Chapter 1 Introduction

1.1 About Target Contracts

Information Description
Type Smart Contract
Language Solidity
Approach Semi-automatic and manual verification

The target of this audit is a ZIP archive of CoboTokenization of Cobo.
CoboTokenization is a sophisticated, upgradeable ERC20 token implementation with role-

based access control, and can be deployed on different chains with same address via the
contract ProxyFactory.

Note this audit only focuses on the smart contracts in the following directories/files:
src/*
Other files are not within the scope of the audit. Additionally, all dependencies of the

smart contracts within the audit scope are considered reliable in terms of both functionality
and security, and are therefore not included in the audit scope.

The auditing process is iterative. Specifically, we would audit the files that fix the discov-
ered issues. If there are new issues, we will continue this process. The MD5 hashes of the
audited files during the audit are shown in the following table. Our audit report is responsible
for the code in the initial version (Version 1), as well as new code (in the following versions)
to fix issues in the audit report.

Project Version MD5 Hash

CoboTokenization Version 1 28743f93aa5e695b726313ea960b2a69
Version 2 e80f2e3b2edc9851b149fcd14ce745c5

1.2 Disclaimer

This audit report does not constitute investment advice or a personal recommendation.
It does not consider, and should not be interpreted as considering or having any bearing on,
the potential economics of a token, token sale or any other product, service or other asset.
Any entity should not rely on this report in any way, including for the purpose of making any
decisions to buy or sell any token, product, service or other asset.

This audit report is not an endorsement of any particular project or team, and the report
does not guarantee the security of any particular project. This audit does not give any war-
ranties on discovering all security issues of the smart contracts, i.e., the evaluation result does
not guarantee the nonexistence of any further findings of security issues. As one audit can-
not be considered comprehensive, we always recommend proceeding with independent audits
and a public bug bounty program to ensure the security of smart contracts.

The scope of this audit is limited to the code mentioned in Section 1.1. Unless explic-
itly specified, the security of the language itself (e.g., the solidity language), the underlying
compiling toolchain and the computing infrastructure are out of the scope.

1.3 Procedure of Auditing

We perform the audit according to the following procedure.
- Vulnerability Detection We first scan smart contracts with automatic code analyzers,
and then manually verify (reject or confirm) the issues reported by them.

- Semantic Analysis We study the business logic of smart contracts and conduct further
investigation on the possible vulnerabilities using an automatic fuzzing tool (developed by
our research team). We alsomanually analyze possible attack scenarioswith independent
auditors to cross-check the result.

- Recommendation We provide some useful advice to developers from the perspective
of good programming practice, including gas optimization, code style, and etc.
We show the main concrete checkpoints in the following.

1.3.1 Security Issues

∗ Access control
∗ Permission management
∗ Whitelist and blacklist mechanisms
∗ Initialization consistency
∗ Improper use of the proxy system
∗ Reentrancy
∗ Denial of Service (DoS)
∗ Untrusted external call and control flow
∗ Exception handling
∗ Data handling and flow
∗ Events operation
∗ Error-prone randomness
∗ Oracle security
∗ Business logic correctness
∗ Semantic and functional consistency
∗ Emergency mechanism
∗ Economic and incentive impact

1.3.2 Additional Recommendation

∗ Gas optimization
∗ Code quality and style

�

Note The previous checkpoints are the main ones. We may use more checkpoints during the
auditing process according to the functionality of the project.

2

1.4 Security Model

To evaluate the risk, we follow the standards or suggestions that are widely adopted by
both industry and academy, including OWASP Risk Rating Methodology 1 and CommonWeak-
ness Enumeration 2. The overall severity of the risk is determined by likelihood and impact.
Specifically, likelihood is used to estimate how likely a particular vulnerability can be uncov-
ered and exploited by an attacker, while impact is used to measure the consequences of a
successful exploit.

In this report, both likelihood and impact are categorized into two ratings, i.e., high and low
respectively, and their combinations are shown in Table 1.1.

Table 1.1: Vulnerability Severity Classification

Im
pa
ct

High High Medium

Low Medium Low

High Low
Likelihood

Accordingly, the severity measured in this report are classified into three categories: High,
Medium, Low. For the sake of completeness, Undetermined is also used to cover circum-
stances when the risk cannot be well determined.

Furthermore, the status of a discovered item will fall into one of the following five cate-
gories:

- Undetermined No response yet.
- Acknowledged The item has been received by the client, but not confirmed yet.
- Confirmed The item has been recognized by the client, but not fixed yet.
- Partially Fixed The item has been confirmed and partially fixed by the client.
- Fixed The item has been confirmed and fixed by the client.

1https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
2https://cwe.mitre.org/

3

https://owasp.org/www-community/OWASP_Risk_Rating_Methodology
https://cwe.mitre.org/

Chapter 2 Findings

In total, we found one potential security issue. Besides, we have one recommendation and
four notes.

- Medium Risk: 1
- Recommendation: 1
- Note: 4

ID Severity Description Category Status

1 Medium Potential front-run attack in the function
deployAndInit()

Security Issue Fixed

2 - Add zero address checks Recommendation Confirmed
3 - Access list disabled by default Note -

4 - Behavior when an account exists in both
_accessList and _blockList

Note -

5 - Pausable functionality implementation Note -
6 - Potential centralization risks Note -

The details are provided in the following sections.

2.1 Security Issue

2.1.1 Potential front-run attack in the function deployAndInit()

Severity Medium
Status Fixed in Version 2

Introduced by Version 1

Description The function deployAndInit() invokes factory.doDeploy() to deploy a proxy
contract CoboERC20Proxy. However, since the proxy address is generated via deployCreate3
(which depends on msg.sender and salt), and the msg.sender in this case is the contract
ProxyFactory, an attacker could front-run a victim’s deployAndInit() invocation by submit-
ting an identical transaction with the same salt.

This would result in the same proxy address being generated, but the attacker could hi-
jack the deployment by setting critical parameters (e.g., admins, managers, etc.) to their own
addresses, leading to hijacking the token contract.

Moreover, the function deployAndInit() allows any caller to deploy a new CoboERC20 to-
ken proxy and initialize it with custom parameters. The admins and managers (along with other
roles like minters, burners, etc.) can be arbitrarily specified by the caller without any valida-
tion or restrictions. This could potentially lead to unauthorized token deployments or privilege
escalation if not properly restricted.
30 function deployAndInit(
31 uint256 salt, // salt for proxy deployment, eg: uint256(bytes32("CoboERC20Proxy"))
32 address coboERC20Logic, // coboERC20 logic address
33 string memory name, // name

34 string memory symbol, // symbol
35 string memory uri, // uri
36 uint8 decimal, // decimal
37 address[] memory admins, // admin address
38 address[] memory managers, // managers address
39 address[] memory minters, // minters address
40 address[] memory burners, // burners address
41 address[] memory pausers, // pausers address
42 address[] memory salvagers, // salvagers address
43 address[] memory upgraders // upgraders address
44) public returns (address) {
45 // check if admins is empty
46 if (admins.length == 0) revert InvalidAddress();
47
48 address _this = address(this);
49 IFactory factory = IFactory(0xC0B000003148E9c3E0D314f3dB327Ef03ADF8Ba7);
50
51 // TODO: add init code
52 address proxy = factory.doDeploy(
53 salt,
54 abi.encodePacked(
55 type(ERC1967Proxy).creationCode,
56 abi.encode(coboERC20Logic,bytes(""))
57)
58);
59 CoboERC20 coboERC20Proxy = CoboERC20(proxy);
60 // TODO: initialize
61 coboERC20Proxy.initialize(name, symbol, uri, decimal, _this);
62 // TODO: add admin, manager, minter, burner, pauser, salvager, upgrader
63 for (uint256 i = 0; i < admins.length; i++) {
64 // check if admin is empty
65 if (admins[i] == address(0)) revert InvalidAddress();
66 coboERC20Proxy.grantRole(coboERC20Proxy.DEFAULT_ADMIN_ROLE(), admins[i]);
67 }
68 for (uint256 i = 0; i < managers.length; i++) {
69 coboERC20Proxy.grantRole(coboERC20Proxy.MANAGER_ROLE(), managers[i]);
70 }
71 for (uint256 i = 0; i < minters.length; i++) {
72 coboERC20Proxy.grantRole(coboERC20Proxy.MINTER_ROLE(), minters[i]);
73 }
74 for (uint256 i = 0; i < burners.length; i++) {
75 coboERC20Proxy.grantRole(coboERC20Proxy.BURNER_ROLE(), burners[i]);
76 }
77 for (uint256 i = 0; i < pausers.length; i++) {
78 coboERC20Proxy.grantRole(coboERC20Proxy.PAUSER_ROLE(), pausers[i]);
79 }
80 for (uint256 i = 0; i < salvagers.length; i++) {
81 coboERC20Proxy.grantRole(coboERC20Proxy.SALVAGER_ROLE(), salvagers[i]);
82 }
83 for (uint256 i = 0; i < upgraders.length; i++) {
84 coboERC20Proxy.grantRole(coboERC20Proxy.UPGRADER_ROLE(), upgraders[i]);
85 }
86 coboERC20Proxy.renounceRole(coboERC20Proxy.DEFAULT_ADMIN_ROLE(), _this);

5

87
88 return proxy;
89 }

Listing 2.1: src/deploy/ProxyFactory.sol

Impact Unauthorized tokens with unexpected parameters can be deployed.
Suggestion Revise the code logic accordingly.

2.2 Recommendation

2.2.1 Add zero address checks

Status Confirmed
Introduced by Version 1

Description In the function deployAndInit(), several address variables (e.g., managers, minters)
are not checked to ensure they are not zero. It is recommended to add such checks to prevent
potential mis-operations.
68 for (uint256 i = 0; i < managers.length; i++) {
69 coboERC20Proxy.grantRole(coboERC20Proxy.MANAGER_ROLE(), managers[i]);
70 }
71 for (uint256 i = 0; i < minters.length; i++) {
72 coboERC20Proxy.grantRole(coboERC20Proxy.MINTER_ROLE(), minters[i]);
73 }
74 for (uint256 i = 0; i < burners.length; i++) {
75 coboERC20Proxy.grantRole(coboERC20Proxy.BURNER_ROLE(), burners[i]);
76 }
77 for (uint256 i = 0; i < pausers.length; i++) {
78 coboERC20Proxy.grantRole(coboERC20Proxy.PAUSER_ROLE(), pausers[i]);
79 }
80 for (uint256 i = 0; i < salvagers.length; i++) {
81 coboERC20Proxy.grantRole(coboERC20Proxy.SALVAGER_ROLE(), salvagers[i]);
82 }
83 for (uint256 i = 0; i < upgraders.length; i++) {
84 coboERC20Proxy.grantRole(coboERC20Proxy.UPGRADER_ROLE(), upgraders[i]);
85 }

Listing 2.2: src/deploy/ProxyFactory.sol

Suggestion Add non-zero address checks accordingly.

2.3 Note

2.3.1 Access list disabled by default

Introduced by Version 1

Description The function __AccessList_init() in the contract AccessListUpgradeable ini-
tializes variable accessListEnabled as false by default. This means that there is always a time

6

window between contract deployment and the explicit enabling of the access list, during which
users not on the access list can still perform transfers or other operations.
92 function __AccessList_init() internal virtual onlyInitializing {
93 accessListEnabled = false;
94 }

Listing 2.3: src/CoboERC20/library/Utils/AccessListUpgradeable.sol

Feedback from the project It is by design.

2.3.2 Behavior when an account exists in both _accessList and _blockList

Introduced by Version 1

Description In the contract CoboERC20, the function _requireAccess() checks if an account
has access permissions. If an account exists in both the _accessList and _blockList, the
function _requireAccess() will revert due to the _blockList check.
396 function _requireAccess(address account) internal view virtual {
397 if (accessListEnabled) {
398 if (!_accessList.contains(account)) revert LibErrors.NotAccessListAddress(account);
399 }
400
401 if (_blockList.contains(account)) revert LibErrors.BlockedAddress(account);
402 }

Listing 2.4: src/CoboERC20/CoboERC20.sol

Feedback from the project It is by design.

2.3.3 Pausable functionality implementation

Introduced by Version 1

Description The contract CoboERC20 uses OpenZeppelin’s PauseUpgradeable but does not ap-
ply themodifier whenNotPaused to the functions burn() and burnFrom(). Thismeans that burning
operations remain unprotected when the contract is paused.
209 function burnFrom(address account, uint256 amount) public virtual onlyRole(MANAGER_ROLE) {
210 if (amount == 0) revert LibErrors.ZeroAmount();
211 _burn(account, amount);
212 }

Listing 2.5: src/CoboERC20/CoboERC20.sol

189 function burn(uint256 amount) external virtual onlyRole(BURNER_ROLE) {
190 if (amount == 0) revert LibErrors.ZeroAmount();
191 _burn(_msgSender(), amount);
192 }

Listing 2.6: src/CoboERC20/CoboERC20.sol

Feedback from the project It is by design.

7

2.3.4 Potential centralization risks

Introduced by Version 1

Description In this project, several privileged roles (e.g., MINTER_ROLE, DEFAULT_ADMIN_ROLE)
can conduct sensitive operations, which introduces potential centralization risks. For example,
MINTER_ROLE canmint tokens to users based on the protocol. If the private keys of the privileged
accounts are lost or maliciously exploited, it could pose a significant risk to the protocol.

8

	1 Introduction
	1.1 About Target Contracts
	1.2 Disclaimer
	1.3 Procedure of Auditing
	1.3.1 Security Issues
	1.3.2 Additional Recommendation

	1.4 Security Model

	2 Findings
	2.1 Security Issue
	2.1.1 Potential front-run attack in the function deployAndInit()

	2.2 Recommendation
	2.2.1 Add zero address checks

	2.3 Note
	2.3.1 Access list disabled by default
	2.3.2 Behavior when an account exists in both _accessList and _blockList
	2.3.3 Pausable functionality implementation
	2.3.4 Potential centralization risks

		2025-08-04T17:01:21+0800

